9月26日,上海市科学技术委员会发布《上海区块链关键技术攻关专项行动方案(2023-2025年)》(以下简称《行动方案》),提出到2025年,在区块链体系安全、密码算法等基础理论以及区块链专用处理器、智能合约、跨链、新型存储、隐私计算、监管等技术领域,加快实现创新突破,形成可支撑Web3.0创新应用发展、可管可控、开源开放的新一代开放许可链技术体系与标准规范,为构建数字经济可信安全技术底座、培育具有全球影响力的新一代区块链创新生态奠定基础。
《行动方案》明确了“新型体系架构、资源调度与管控、信任增强”三大主攻方向以及“基础软硬件技术突破、体系架构技术创新、资源调度技术攻关、安全管控技术研究、信任增强技术突破”五大重点任务。
以下是部分内容:
主攻方向
主攻方向一:新型体系架构
支持区块链体系安全的前沿理论研究。重点在基础软硬件技术领域,研发支持交易处理加速、密钥安全、密态计算的安全计算芯片、专用加速芯片等,达到国际先进水平;攻关广域网高鲁棒传输技术,设计面向大规模应用的高性能路由算法,实现广域网高性能、高稳定性、低延时通信,增强业务网络的通用承载能力;研究形成激励相容的经济模型,支撑区块链生态资源的合理分配和系统的稳定运行,实现原创性理论模型的突破。设计体系安全、开放、高效、可扩展、监管友好的新型区块链系统架构,构建支撑大规模应用的开放许可链网,在国际电信联盟(ITU)、电气与电子工程师协会(IEEE)等主流国际标准中实现自主技术的实质性占位。
主攻方向二:资源调度与管控
重点在资源调度领域,研发异构区块链底层系统资源通用抽象模型以及存储访问、隐私保护、权限管理、合约升级、调试环境等通用中间件,实现区块链应用的模块化设计和低代码开发,加速区块链应用生态繁荣发展。在安全监管领域,开展链上行为分析、内容管控等关键技术研究,实现区块链信息的高效分析、实时监测和有效管控,形成链上违规内容检测和管控的闭环机制,相关技术达到国际先进水平,为区块链风险预警和行为监管提供有力支撑。
主攻方向三:信任增强
重点攻关隐私计算技术,研发新型协议,突破隐私计算通讯效率瓶颈,降低隐私计算开销,实现抗量子的可证明安全。推进多方安全计算与可信执行环境等技术交叉融合,开发国际先进的多技术路线融合解决方案,为区块链提供隐私保护能力,进一步提升区块链在数据流通、数字资产交易等方面的应用支撑能力,推动相关跨境应用试点。
重点任务
基础软硬件技术突破
安全计算芯片。研发支持区块链智能合约、交易处理以及全同态等算法硬件加速的异构融合计算芯片,研究区块链应用下的密态计算、密钥托管等标准,推动区块链数据隐私保护标准与链下安全计算规范以及全同态、零知识证明等核心算子硬件加速芯片方案的落地应用。到2025年,加密芯片对称加解密支持不低于100千兆比特每秒(100Gbps);非对称密码签名不低于30万次每秒,验签不低于10万次每秒;全同态基础密文计算(如同态密文加法、同态密文乘法)与现有国际最高水平的开源同态加密算法库相比加速百倍以上。
广域网高鲁棒传输。针对大规模区块链节点、多方数据协作节点通信效率低、稳定性差,且难以支撑工业级生产应用的问题,推进广域低延迟通信骨干网技术研究,研发高性能、高可靠、可运维、可升级、兼容现有对等网络(P2P)系统的应用层消息路由网络,定义去中心化应用路由消息传输协议,结合传输协议优化、节点路由表和多路路由,实现高性能通信。到2025年,在城域网部署条件下,区块链消息传输端到端时延小于500毫秒;在5000个节点全球部署环境下,95%以上的区块链消息在15秒内传播至95%的节点。
后量子密码。研究区块链底层算法从经典密码向后量子密码的平稳过渡方案。到2025年,完成后量子密码签名算法设计,基于格的后量子数字签名算法的签名和公钥尺寸相较于Dilithium等算法标准缩小10%,签名时间缩短10-20%;基于哈希的后量子签名算法的签名尺寸和签名时间相较于SPHINCS+等算法标准缩短8-10%。面向量子计算机对密钥管理系统的威胁,设计量子安全的分布式密钥管理系统。形成区块链中现有公钥密码技术向后量子密码技术安全迁移的解决方案。
体系架构技术创新
多链组网架构。研究区块提案-构建分离、数据-执行层共识解耦、模块化可插拔共识、多链协同与自适应组网等关键技术,实现不同区块链网络之间的数据和资产互操作,形成开放、高效、可扩展、监管友好的多区块链系统架构,推进相关规范与标准研究,构建可支撑大规模应用的开放许可链网。到2025年,形成多链组网协议以及统一的多共识层网络框架,构建开放许可链网,支持子网快速接入。
扩展分片。面向区块链系统支持扩展分片的需求,研究自适应的动态分片策略、跨片交易验证、动态组网、交易分片的数据模型、网络分片协议等技术,实现高性能的链上扩容,支持动态、混合、可扩展的组网级联模式,形成大规模组网能力,提高数据存储效率和访问性能。到2025年,分片数量不低于100个,数据处理能力随分片数量线性扩展,并保证数据在分片传输、处理、存储等环节的安全性。
编译器和工具。开发智能合约编辑、合约编译、开发环境、合约部署、合约调试等智能合约工具,推进智能合约开发者社区建设。到2025年,形成一套完备的智能合约开发、部署、调试工具,提升区块链智能合约开发效率,降低部署成本。
链数据存储。研究链存储存储结构、数据同步机制等关键技术,提升链数据存储容量上限,提高链数据存储和查询效率及扩展性。到2025年,实现单节点存储容量达到拍字节(PB)级,单个区块大小达到吉字节(GB)级,单笔交易大小达到100兆字节(MB)级,支持每秒不低于十万笔的交易处理。
分布式可验证存储。研究数据可靠性和一致性检测、高效数据索引、动态存储调度、分布式存储激励机制等分布式可验证存储关键技术。到2025年,实现支持不少于1000个节点组网的大规模分布式可验证存储系统,支持存储规模随节点数量线性扩展,链上智能合约对分布式存储数据的读写能力达到每秒2万条以上。
资源调度技术攻关
抽象模型与中间件。研究区块链底层系统资源通用抽象模型理论,研发存储访问、隐私防护、权限管理、合约升级、调试环境等通用中间件,完善区块链系统应用接口、链上域名解析等标准规范。到2025年,研发不少于10种区块链基础组件和开发工具,适配不少于5种异构底层区块链系统,实现区块链应用的模块化设计和低代码开发。
跨链互操作。面向不同区块链系统间信息共享、协作互通的需求,研究跨链安全模型、跨链通信与互操作协议、基于可信执行环境的跨链网关、基于密码学方案(包括零知识证明、多方安全计算等)的跨链桥等关键技术。到2025年,实现异构区块链的跨链通信和互操作,支持无需信任假设的链上验证跨链模式,适配不少于5种异构底层区块链系统,跨链合约调用吞吐率不低于10000笔交易每秒(10000TPS)。
可信数据上链。面向链上与链下的数据互联互通需求,开展可信物联网终端、分布式预言机、数据可靠性验证模型等关键技术研究,实现区块链与链外系统、物联网设备之间的信息互联互通。到2025年,研发支持多类型终端设备和万级组网规模的物联网设备区块链模组,兆字节(MB)级可信数据上链过程不超过500毫秒(500ms),构建验证准确率不低于90%、验证时间小于1秒的数据可信性评估模型。
信任增强技术突破
隐私计算。针对现有隐私计算技术效率和安全性难以适应区块链应用场景需求的问题,研究新型多方安全计算协议,突破通信效率瓶颈,提升计算效率,并实现抗量子的可证明安全。研究可信执行环境的机密计算技术。研究多方安全计算、可信执行环境、联邦学习等技术的交叉融合,形成多技术路线融合的解决方案。到2025年,设计出不少于3种恶意敌手模型下的高效率多方安全计算协议,相比国际/国内同类协议运行效率提升一倍以上;多技术路线融合的隐私计算解决方案在亿级参数规模的神经网络模型训练和推理中实现应用。
可验证计算。面向区块链系统和应用高效验证计算结果正确性的需求,开展可验证计算技术研究,提升可验证计算的可靠性、数据一致性和性能。到2025年,提出2种以上可验证计算安全协议,可支持大规模数据秒级计算,在可验证全同态加密、后量子零知识证明、链下扩容、链上区块压缩等方向实现应用。(校对/赵碧莹)